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The spin-up flow in a cylinder of homogeneous fluid has been examined both ex- 
perimentally and numerically. The primary motivation for this work was to  check 
numerical solution schemes by comparing the numerical results with laboratory 
measurements obtained with a rotating laser-Doppler velocimeter. The laser- 
Doppler technique is capable of high accuracy with small space and time resolution, 
and disturbances of the flow are virtually negligible. A series of measurements was 
made of the zonal flow over a range of Ekman numbers (1.06 x 10-3 < E < 3-30 x 
and Rossby numbers (0.10 ,< ~ E J  ,< 0.33) at various locations in the interior of the 
flow. These measurements exceed previous ones in accuracy, The weak inertial modes 
excited by the impulsive start are detectable, The numerical simulations used the 
primitive equations in axisymmetric form and employed finite-difference techniques 
on both constant and variable grids. The number of grid points necessary to resolve 
the Ekman layers was determined. A thorough comparison of the simulations and 
the experimental measurements is made which includes the details of the amplitude 
and frequency of the inertial modes. Agreement to within the experimental tolerance 
is achieved. Analytical results for conditions identical to those in the experiments are 
not available but some similar linear and nonlinear theories are also compared with 
the experiments. 

1. Introduction 
The new laser-Doppler technique for fluid flow measurement introduced by Yeh & 

Cummins ( 1964) has enabled experimentalists to obtain accurate velocity measure- 
ments with virtually no disturbance of the flow. This technique is particularly helpful 
for measurements in contained and rotating laboratory flows, where conventional 
probes often significantly disturb the flow (Fultz & Kaiser 1971; Cerasoli 1975). It has 
been recognized recently that such measurements can provide a powerful method for 
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the evaluation of the accuracy of numerical simulation techniques. The primary 
motivation for this research was to check numerical simulation schemes by comparing 
them with accurate and disturbance-free laser-Doppler measurements of spin-up. 

This paper describes an experimental and numerical investigation of the flow result- 
ing from the spin-up of a homogeneous fluid in a cylindrical container. This spin-up 
(spin-down) experiment consisted of suddenly increasing (decreasing) the rotation 
rate of a cylindrical fluid container and examining the transient fluid motions which 
adjust the fluid from one state of solid-body rotation to the other. Weak inertial 
oscillations are excited by the change in rotation rate. For an excellent review of work 
on spin-up see Benton & Clark (1974). Greenspan & Howard (1963) showed that, for 
a relatively strong rotation rate and for a small change in the rotation rate, three 
time scales are involved in the complete spin-up process. First Ekman layers form on 
the horizontal surfaces on a time scale 2/Q, where Q is the rotation rate. In  these 
Ekman layers fluid moves radially outwards and is replaced by fluid drawn from the 
interior. In  the interior, fluid moves radially inwards to replace the fluid removed and 
conserves angular momentum as it moves. This process spins up the interior on a 
time scale given by h/(vQ) t ,  where his the half-depth of the fluid and v is the kinematic 
viscosity. Finally, all motions decay on a diffusion time scale of h2/v .  

The experimental results presented by Fowlis & Martin (1975) and the results 
presented in this paper were obtained in a cylinder with a rigid top which was in 
contact with the water which filled the container. The laser-Doppler technique was 
used to measure the zonal flow for several rotation rates, for several changes in rota- 
tion rate AQ and for different radial and depth locations ( r ,  z )  within the cylinder. 
The accuracy, spatial resolution and time resolution of the technique are such that 
the weak intertial modes could be identified clearly. The relevant dimensionless para- 
meters are the Ekman number E = v /n ih2 ,  where ai is the initial rotation rate, and 
the Rossby number 6 E A!2/Qi. The choice of Qi rather than the final rotation rate 
CJf for scaling purposes is based upon the fact that the nonlinear spin-up theories 
show that even for moderate e the spin-up time is given more accurately by a time 
defined using Qt. The experiments were carried out for parameter ranges 

1-06 x 6 E < 3.30 x 0.100 < 6 0.333. 

There is no experimental or theoretical evidence to suggest that for these parameter 
ranges the flow should not be axisymmetric. 

Numerical simulations were carried out for conditions almost identical to the 
experimental conditions. The simulations used the primitive equations in axisymmetric 
form and employed finite-difference techniques on a staggered mesh. Both constant 
and variable grids with corresponding different spatial and time differencing schemes 
were tried and the results compared with one another and with the experimental 
results. The particular question of how many grid points should be used in the top 
and bottom Ekman layers, the thinnest boundary layers in the system, was investi- 
gated. The numerical and experimental results for the zonal velocity at  different 
locations within the cylinder are superimposed to exhibit the excellent agreement 
which was obtained. 

Detailed analytical results for the same conditions as in the experiments described 
in this paper are not available. Greenspan & Howard (1963) carried out a linearized 
analysis for spin-up between two infinite parallel disks which included the inertial 
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FIGURE 1. A schematic drawing showing the essential geometry 
of the dual-scatter LDV system. 

oscillations and a comparison is made of their results with the experimental results. 
Later workers extended this analysis to include nonlinear effects and finite geometry 
and some of these results are discussed and a!So compared with the experimental 
results. 

2. Experimental apparatus and procedures 
This section includes a description of the experimental apparatus and procedure 

and a very brief description of the laser-Doppler technique; further details and 
references on this technique are given in Fowlis & Martin (1975), Adrian & Goldstein 
(1971) and George & Lumley (1973). The parameters for the spin-up experiments are 
given in 0 4 and tables 1 and 2 and the results are shown in figures 8-16. 

A right circular Plexiglas cylinder (inner diameter 2b = 18-98 & 0.01 cm, depth 
2h = 6.04 & 0.01 cm) with a rigid lid was filled with water and mounted with its axis 
of symmetry vertical on a horizontal turntable. The turntable (Genisco Model 1147-2) 
had an oil hydrostatic bearing and a direct drive controlled by a d.c. feedback loop. 
The error in R was almost always less than I in 5000 and the error in A 0  always less 
than 1 in 500. In  order for the imposed change in angular velocity to be considered 
impulsive, AR should be accomplished in a time small compared with the shortest 
time scale of the problem (2/Ri). The changes were performed as quickly as the turn- 
table system would allow. The angular acceleration 0 was constant; for increases in 
R, 0 = 0.12 s - ~ ,  and for decreases, i'2 = 0.15 s - ~ .  The above requirement for an im- 
pulsive change canbe written as RiAR/20 < 1.  Fortheworst case (table 1, figure 11 b )  
this ratio was equal to 0.82 but for most of the experiments the ratio was less than 
0-37, thus most of the experiments can be considered as approximately impulsive. 

The relative zonal flow velocity was measured using a laser-Doppler velocimeter 
(LDV) mounted on and attached to the turntable. Figure 1 is a plan view showing 
the essential geometry of the dual-scatter LDV system chosen. A helium-neon laser 
(Spectra-Physics, Model 120) was used. The location of the flow measurement is at 
the cross-over point of the laser beams. The flow speed was determined from a measure- 
ment of the Doppler frequency shift of the scattered light. The relationship between 
the flow velocity v and the Doppler frequency vD is v = hv,/2nsin 40, where h is the 
wavelength of the laser light (in vacuo), n is the refractive index of the fluid and 0 is 
the angle between the beams. For the experiments described in this paper 0 varied 

21-2 
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between 7.30" and 8.1 1") the measured values of v, ranged from about 110 to 2700 8-1 
and the corresponding values of u from about 0.036 to 0.91 cm s-1. Small polystyrene 
spheres (diameter 0.5 pm) were added to the water in a concentration ratio of about 
3 x by volume to enhance the scattered signal. There is no theoretical or experi- 
mental evidence to suggest that effects due to the scatterers or the weak absorption 
of the laser light produced noticeable disturbances of the flow. 

The output signal from the photomultiplier (Centronic, type P4283B) was taken 
off the turntable by overhead slip rings. This output was amplified then passed through 
a band-pass filter to eliminate unwanted high and low frequencies. The filtered signal 
was amplified, then clipped and its frequency determined by a counter (Hewlett- 
Packard, Model 52461;) and printed out. The sample period of the counter was chosen 
to be either 0.5 s or 1 s depending on the Doppler frequency and the inertial-mode 
frequency to be resolved. Measurements at different radii and different depths within 
the cylinder were made by moving the lenses and other optical components and the 
cylinder itself between experiments. The errors in both the radial and the depth 
measurement locations were 0.05 cm. 

Between experiments, the water in the cylinder was stirred up about once every 
hour and its temperature measured. The error in this measurement and the variation 
in temperature throughout the cylinder were close to +_ 0.1 "C. 

A detailed discussion of the sources of errors for the velocity measurements using 
this LDV system is given by Fowlis & Martin (1975) and Adrian (1972). The dominant 
source of systematic errors in the velocity measurements for this work was due to 
the error in 0. The calculated average value of the standard error in the mean of 0 
was 0.4%. The error in the radial location of about f 0.05 cm leads to an additional 
error which is present in the non-dimensional plots of the results (figures 8-16); for 
r = 2.37, 4.75 and 7.12 cm, the errors are f 2.1%) f 1.1% and f 0.7y0, respectively. 
The above error analysis can be checked against the actual experimental results by 
extrapolating the experimental points in figures 8-16 back to zero time. The observed 
average spread of about 2.5% around the expected non-dimensional value of unity 
is in good agreement with the above analysis. 

Random errors are due to the bandwidth of the Doppler signal and the finite sample 
period. The most important sources of frequency broadening for this work were transit- 
time broadening and velocity-gradient broadening. The signal-to-noise ratio was 
always very large and so it was not necessary to consider noise broadening. Transit- 
time broadening is due to the finite time it takes a scatterer to pass through the cross- 
over volume of the laser beams and velocity-gradient broadening is due to the radial 
velocity gradient across the cross-over volume. For these experiments the fractional 
bandwidths due to transit-time broadening and velocity-gradient broadening were 
0.049 and 0.018, respectively. These values combine to give a net fractional band- 
width of 0.052. Using the results of Adrian (1972) for the errors due to zero-crossing 
counting, we obtain an r.m.s. fluctuation of f 0.4%. Examination of the scatter of 
the experimental points in figures 8-16 indicates values consistent with this result. 

3. The numerical simulations 
The simulations were carried out for conditions almost identical to those in the 

laboratory experiments. The initial flow was taken to be solid-body rotation with 
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angular velocity Q, then the container’s rotation rate was changed impulsively to 
another value Qf = Qi +_ Ai2 to effect a spin-up or spin-down. The Coriolis term used 
in the simulations involved this final value Qf instead of Qi (the value chosen for 
scaling purposes). This, of course, makes no physical difference but one has to remember 
what has been done when interpreting some of the results. 

The simulations employed finite-difference forms of the axisymmetric incompress- 
ible Navier-Stokes equations in cylindrical co-ordinates ( r ,  8, z )  for the respective 
velocity components (u, v, w) .  These equations are 

where p denotes the pressure and p the density. The corresponding continuity equation 
is 

The initial conditions for the fluid are 

u = w = O ,  v =  +AQr  for t = 0 .  ( 5 %  b )  

Note that because Qf is used in (1)  and (2) the plus sign in ( 5 b )  denotes a spin-down 
experiment and the minus sign a spin-up experiment. The boundary conditions on 
the cylindrical wall and on the bottom and top disks are 

u =  v =  w = 0 for r =  b, z =  0,2h. ( 6 )  

A thin solid cylinder of very small but finite radius ( r  = a )  was inserted to satisfy 
numerical stability requirements. Symmetry conditions require that 

u = v = aw/ar = 0 for r = a. ( 7 )  

In  order to illustrate the dynamical importance of the thin boundary layers and 
the corresponding demand that their resolut.ion places on the numerical model, two 
different grid systems were used: a uniform grid with constant mesh spacing and a 
stretched grid with variable mesh intervals. The effect of increasing the number of 
mesh intervals in both cases was observed. Both types are in current use in numerical 
fluid dynamics, and a comparison of their economy and accuracy seemed to be of 
interest. The results show that the excessive computer time incurred by the constant- 
grid code while giving only marginal resolution of the boundary layers makes the 
stretched-grid code far superior. The results emerging from these experiments indicate 
that the increased truncation error due to the grid stretching and the poorer resolution 
of the interior regions do not offset at all the advantages gained by the correct resolu- 
tion and simulation of the boundary-layer dynamics. The finite differencing of the 
advection and friction terms was somewhat different in the two cases, but previous 
numerical experiments have shown the resultant differences to be too small to explain 
the results with grid stretching and boundary-layer resolution. 
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FIQLTRE 2. The stretched and staggered grid which was used for some of the numerical simulations. 
This diagram shows qualitatively the variable spacing of the grid points and the staggered 
arrangement of the points a t  which the various dependent variables are defined. 0, vertical 
velocity ; , radial velocity ; x , zonal velocity and pressure. 

We shall discuss first the stretching of the mesh and the spatial differencing, then 
the time differencing and the method used to find the pressure. The stretching of the 
mesh was accomplished by the use of the function 6 = [exp ( r / r l )  - l]/[exp (r/rl)  + 11, 
where rr is a normalization constant that controls the stretching in the lth boundary 
layer. For equal increments Ag of the function & = iAg, a set of co-ordinate values ri 
will be generated for which Ar = ri - ri--l constitutes the variable mesh spacing. 
A similar transformation is effected between 7 and z. It must be pointed out that the 
equations are not transformed to a new co-ordinate system (t,?), but are directly 
differenced on the new grid (Ti, z k ) ;  the functions 6 and 7 merely serve the purpose of 
creating a smoothly varying r,  z mesh. 

The spatial differencing of all terms in the system (1)-(4) on a constant mesh is 
performed according to the scheme presented by Williams (1969) and Harlow & 
Welch (1965), and will not be discussed here. This scheme will be referred to hereafter 
as scheme A .  The difference scheme used on the variable mesh will be referred to as 
scheme B and will be described below in detail. Bryan (1966) has given an extension 
of scheme A to variable meshes, but somewhat different procedures will be followed 
in this paper. 

The differencing of the advection terms will be illustrated for the transport part of 
the radial velocity equation (1). The scheme was presented for constant grids by 
Piacsek & Williams (1970). We shall denote the co-ordinate axes by ri and z k )  the 
time by t* = nAt and the value of a dependent variable 4 by q5(ri, z k ;  t") = $zk, the 
superscript denoting a time level and the subscripts a mesh-point location in space. 
Reference should be made to figure 2 to inspect the arrangement of the dependent 

. 
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variables on the various subsets of the staggered mesh. Using these symbols, we 
have 

(4riAri++)-' [ri++(ui+l +ui)ui+l - r < - i ( ~ i  +ui-1)ui-llk 

+ (4AZk+))-1 [(wi+i + wi-))k+iui, k+l - (wi+i + Wi-J)k- iUi ,  k-11- (8) 

In  the use of staggered meshes, variables that are required at locations where they 
are not defined are obtained at  these points by simple linear averaging. The factor 4 
in the denominator of (8) contains a factor of 2 that characterizes the scheme and tt 

factor of 2 that is the result of the simple averaging to find ui+i,k and wi+i,k+i (see 
figure 2 ) .  In  scheme A the quantities u ~ + ~ ,  k )  ui-l, k ,  ui, k+l  and ui, k-1 multiplying the 
brackets are changed to ui+1, k + ui, k )  u{ -~ ,  k + ui, k ,  ui, k + ui, k + l  and ui, k-1+ ui, k ,  respec- 
tively. The advantage of scheme B [i.e. (S)] ws. scheme A is that (8) conserves u2 
exactly, whereas scheme A conserves it only when the divergence 9 = V - u vanishes. 
For a discussion of this point and the method of evaluating conservation properties 
the reader is referred to Williams (1969) and Piacsek & Williams (1970). It is known 
that the boundedness of u2 ensures stability and that of u does not; furthermore, 
non-zero divergence is always present when iterative methods are used to find the 
pressure (see subsequent discussion). Thus scheme B has proved superior in most 
calculations. The remaining terms in (1) are differenced as follows: the pressure term 
as 

the Coriolis and curvature term as 

The pressure is found from a Poisson equation obt,ained by taking the divergence 
of the system (1) and (3).  Thus 

aB/at  = -V2p+V.{A+C+F}, (12) 

where A = (&Aw), C = (Cu,Cw) and F = (Fu, Fw) are the advection, Coriolis and 
friction terms in the u and w equations, respectively (Cw = 0). The time differencing 
of the system can be represented using the same notation as 

(13) (%?+I - 74-1)/2Af, = p p  +A? + Cp + F?+l,nv a-1, 

where 1 = u, w or w and Fr+1. n, n-l is the Dufort-Frankel scheme given by 

where x is any independent variable. Time differencing (12) yields 

(9)1+1- 9a-1)/2At = - V2p + Sn, 
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where S n  is the second term on the right-hand side of (12). The usual procedure is to 
set @+I = 0, but compute the small but non-zero divergence 9 - 1  due to machine 
round-off errors and iterate (14) to obtain a pressure which compensates for it in 
( 1 )  and (3). 

The Poisson equation is solved by an AD1 iterative approach as 

where the rr are the iteration parameters, 1 denoting the iteration number, p i ,  k is the 
pressure and Xi, the source term at the grid point (i, k). The continuum second- 
derivative operators are understood to represent their appropriate finite-difference 
analogues [as in ( 1  l)]. The boundary conditions on the pressure are of the Neumann 
type, ap/& = G ,  where 5 is the distance normal to the boundary and G is obtained 
from (13) by applying it on the boundary. The optimum iteration parameters are 
calculated by the method outlined in Wachpress (1966, p. 194). This method minimizes 
the maximum eigenvalue of the iteration matrix. 

The deviation from second-order accuracy of the space differencing of the non- 
linear terms will be illustrated for a portion of the vertical velocity equation (13) 
with 1 = w ,  namely awlat = -a(ww)/az .  The deviation is given by terms of the form 

where Azkil = zk+l - zk ,  Az, = zk - zk-l, Az,+& = z,+& - z k  and the staggering of the 
grid is as in figure 2 .  In  this case ( A z , ) ~  < IAzkil--AZkl < Azk and lies closer to (AZk)2 
than to Az,. The formalism thus tends towards second-order accuracy. 

The truncation error in the viscous terms is illustrated using part of ( l ) ,  namely 
au/at = va2u/az2, and is 

These terms are undesirable and are forced to be small in magnitude through the 
choice of At, Azk, Azk+& and Azkil. 

The truncation errors in space and time in these finite-difference equations are 
usually such that the computed phase advancement of a sinusoidal wave by advection or 
wave propagation does not equal the true phase advance of the physical phenomenon. 
This can be readily checked by inserting waves of the form exp i(w,nAt + kAzm/L) 
into a linearized form of (13); here i = ( - l)a, w, and L l m  are the frequency and wave- 
length of the mth mode, respectively, and t = nAt and z = kAz. As an example, we 
shall investigate the dispersion resulting from the leap-frogging of the Coriolis terms. 
We shall analyse the following finite-difference equations: 

(u*'+' -un-l)/2At = 2Qf~" ,  ( ~ i n + l -  wn-')/2At = - 2Qfu". 
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FIGURE 3. Plots of zonal velocity 2's. time at the location ( r  = 4.75 cm, z = 3.00 cm) for a spin- 
up simulation in which Ri  = 0,3142 s-l and AC2 = 0.0349 s-1 ( E  = 3 . 3 0 ~  10-3, e = 0.111). 
Curve (a) was obtained ming scheme A on a constant 62 x 42 grid, curve (b) nsing scheme A 
on a constant 62 x 82 grid and curve (c) on a stretched 42 x 42 grid. 

These equations have t'he eigenvalues h = f [ l  - (4/3)2] -Y(+/3) for 1/31 < 2, where 
/3 = Q, At and At is the t,ime step. The ratio of the computational phase advancement 
to  the true advancement' per time step is 

- BP 0 - tan-1 
Q o -  (3P)214 IPI . 

For a typical spin-up experiment in the range of the experiments described in this 
paper (see Q 4), SZ, = 0.6283 s-1, a, = 0.6981 s-1, p = 4.34 x lop3 and q5/$,, 21 1 +- 2.4 x 

The lead in phase of the computational mode is negligible over the < lo4 time 
steps which were used for the above spin-up. Therefore we do not expect the dispersion 
effects arising from the finite-difference representation of the Coriolis terms to influence 
the results significantly. 

Restrictions on the time step are due to the finite-differencing of the terms. The 
nonlinear terms are subject to the Courant-Friedrichs-Lewy condition At < As/uo, 
where As is the smallest grid spacing and uo is the largest velocity. The time centring 
of the Coriolis terms results in a time-step restriction of At < l /2Q. For the viscous 
terms the condition Atlas < 1 should be satisfied for the finite-difference equation 
to  correspond to a continuum equation and for the round-off error to be small. 
The non-physical computational mode which arises from the finite-differencing of 
the nonlinear terms when a first-order equation in time is raised to a second-order 
difference equation is eliminated by periodic averaging of the variables. 
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Time (s)  

FIGURE 4. Plots of zonal velocity us. time at the location (r = 4.75 cm, z = 3.00 cm) for a 
spin-down simulation in which ad = 0.6981 s-1 and AL! = 0.0698 s-1 ( E  = 1.49 x 
E = 0.200). All three curves were obtained using scheme B on a stretched grid. Curve (a) was 
obtained with an 82 x 82 grid and curves ( b )  and (c) with a 42 x 42 grid. 

Ekman-layer resolution 
The number of grid points in the Ekman layer required to stabilize the spin-up and 
spin-down times, i.e. lead to convergent results, was determined by performing a 
series of numerical simulations using schemes A and B on grids with different numbers 
of points in the Ekman-layer region. The parameters chosen for these tests were the 
same as those for the laboratory experiment whose results are presented in figure 
8 ( a ) ,  namely Qi = 0.3142 s-l, AQ = +0.0349 s-l, E = 3.30 x and e = 0.111. 
Using scheme A the equations were first solved on a 62 x 42 constant grid 

(Ar = 0.158 cm, Az = 0-150 cm). 

The results for the zonal velocity as a function of time for the midradius (T = 4.75 cm) 
and middepth ( z  = 3.00 cm) location are shown in figure 3 as curve (a) .  Then the 
number of mesh intervals in the vertical was doubled (Az = 0.075 cm) and the equa- 
tions solved again. The results for the zonal velocity for the location ( r  = 4.75 cm, 
z = 3.00 cm) are shown in figure 3 as curve (b ) .  This grid-point density corresponds 
to one grid point in the rising portion of the radial velocity profile of the Ekman 
layer. Further experiments using scheme A with increased vertical resolution were 
not performed because of the excessive computer time they would have required. 
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0 

FIGURE 6 .  (a)  Radial velocity profile of the bottom Ekman layer for the spin-up simulation of 
figure 3, curve ( c )  for r = 4.75 cm and a time of 0.278 rotations after the impulsive start. ( b )  
Radial velocity profile of the Ekman layer obtained from the linearized, steady-stste theory 
for the same parameters as curve (a) .  

Next scheme B was used on a stretched 42 x 42 grid. The stretching of the grid 
enabled us to place enough grid points in the Ekman layer to make the spin-up times 
converge without increasing the total number of mesh points and the corresponding 
computer time. The spin-up times stabilized for a resolution which had six grid points 
in the rising portion of the radial velocity profile in the Ekman layer. This was taken 
to be our asymptotic numerical solution. The decay curve for the six-point resolution 
is shown in figure 3 a,s curve ( c ) .  The side-wall boundary layers were resolved by stretch- 
ing the grid in the radial direction. The thinnest of the side-wall boundary layers, 
the so-called Stewartson layer, whose thickness is given by E* x h = 0.447 cm, 
was resolved by approximately nine grid points. 

Simulations were also carried out using scheme B on stretched grids with 42 x 42 
and 82 x 82 points for a spin-down from 0.6981 s-l to 0.6283 s-l. In  the case of the 
82 x 82 grid we had a better overall resolution, particularly in the interior region, 
and had seven points in the rising portion of the radial velocity profile in the Ekman 
layer. We were thus able to observe the effects of halving the spatial truncation terms. 
In  the case of the 42 x 42 grid three stretchings were tried, with one, three and six 
grid points in the rising portion of the Ekman layer. Figure 4 shows the results of 
these experiments. Curve (a )  represents the simulation with the 82 x 82 grid; this is 
identical to the one obtained with the 42 x 42 grid with six points in the boundary 
layer. Curves ( b )  and ( c )  are for the three- and one-point boundary-layer resolution, 
respectively. We have thus established our asymptotic limit on the spin-down time 
of the simul a, t' ions. 
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Time ( s )  
FIGURE 6. Plots of zonal velocity vs. time at the location (c = 4.75 cm, z = 3.00 cm) for a spin- 
up simulation in which C& = 0-3142 8-l and An = 0.0349 s-l ( E  = 3-30 x E = 0-111). All 
three curves were obtained using scheme A on a constant 6 2 x 4 2  grid. Curve (a) is for the 
linearized simulation, curve ( b )  for a linearized simulation in which the nonlinear curvature 
terms were included and curve (c) for the nonlinear simulation. 

I n  order to show clearly what has been resolved, the radial velocity in the Ekman 
layer was plotted from the numerical results for the simulation of figure 3, curve (c). 
Figure 5 shows the flow profile for the midradius ( r  = 4.75 cm) a t  a time of 0.278 
rotations after the impulsive start. The locations of the grid points are also shown. 
For comparison, the dimensionless, linearized, steady-state, analytical solution 
(Greenspan 1969, p. 31), namely 

u = r exp ( - E - h )  sin E-iz, 

is also shown for the same values of the dimensionless parameters. The curves in 
figure 5 show almost exact agreement in the locations of the first maximum and the 
first zero away from the boundary. An Ekman-layer thickness can be defined as E)h, 
which for the parameters of figure 5 is 0.149 cm. Another definition of the thickness is 
the distance at which the analytical solution has its first zero away from the boundary, 
namely z = nEth, which for the parameters of figure 5 is 0.468 cm. Note the six grid 
points within the rising portion of the flow profile between the wall and the first 
maximum. 

The nonlinear terms 

The effects of the nonlinear terms were investigated by omitting these terms in a 
numerical simulation and comparing the results with the corresponding nonlinear 
simulation. Using scheme A on a constant 62 x 43 grid, an experiment was performed 
for spin-up from 0.3142 s-l to 0.3491 s-l. The other parameters were the same as 
t,hose for the laboratory experiment whose results are presented in figure 8(a ) .  The 
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FIGURE 7. Plots of zona.1 velocity vs. time at the location (T = 4.75 cm, z = 3.00 cm) for a 
spin-down simulation in which ni = 0.6981 s-l and AC2 = 0.0698 s-l (E = 1.49 x 
e = 0.100). Both curves were obtained using scheme B on a stretched 42 x 42 grid. Curve (a) 
is for the linearized simulation and curve ( b )  is for the nonlinear simulation. 

results for the zonal velocity at the location (r = 4.75 cm, z = 3.00 cm) are shown 
in figure 6: curve (a)  is for the linearized simulation, curve ( b )  is for a linearized simula- 
tion in which the nonlinear curvature terms were included and curve ( c )  is for the 
nonlinear simulation. The Rossby number for these simulations is 0.111. A larger 
Rossby number should have been used but such simulations were not performed. 
However, the effects of nonlinearity are observed with the existing results. A com- 
parison of the inertial frequencies shows that only the curvature terms significantly 
affect the frequency, and that the inertial frequency in the linear case is greater than 
that in the nonlinear case. This frequency difference is explained as follows. The 
relationship between inertial-mode frequencies and the basic rotation rate is given 
by (15) (see $ 5 ) .  This relationship states that a decrease in Q means a decrease in 
frequency. The Coriolis term in the governing equations (1) and ( 2 )  involves 2Q, and 
when the curvature terms are included the effective Coriolis term involves 2Qf+ v/r.  
For the experiment with spin-up from Qt to a,, v was initially set equal to -A&. 
This effectively decreases the rotation rate for the nonlinear case compared with the 
linear case and hence the frequency in the linear case is greater than that in the 
nonlinear case. As the fluid spins up and v decays, the frequency in the nonlinear case 
will approach that of the linearized case. 
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FIUURE 8. Spin-up results for the location (T = 4.75 cm, z = 3.00 cm). 0,  experimental measure- 
ments; - , numerical solutions. (a) Results for E = 3.30 x and 8 = +0.111. ( b )  Results 
for E = 3.30 x loT3 and 8 = + 0-333. For further details see table 1. 

Using scheme B on a variable 42 x 42 grid, an experiment with spin-down from 
0-6981 s-l to 0.6283 s-l was performed. The other parameters were the same as those 
for the laboratory experiment whose results are presented in figure 12. The results 
for the zonal velocity at the location ( r  = 4-75 cm, z = 3.00 cm) are shown in figure 7: 
curve ( a )  is for the linearized simulation and curve ( b )  for the nonlinear simulation. 
Note that this time the frequency in the linear case is smaller than that in the non- 
linear ca,se. This result is consistent with the above argument. 
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FIGURE 9. Spin-up results for tho location (r = 4.75 cm, z = 3.00 em). (a) 
E = 1.65 x 
details see table 1.  

and E = $0.111. ( b )  Results for E = 1.58 x 10-3 and E = +0.333. 
Results for 
For further 

4. The results 
The results of a selection from the laboratory experiments and the numerical 

simulations carried out over a range of values of E and 8 and for different values of 
r and z are presented in this section. The experiments were performed as described in 
$ 2 .  The simulations were performed using scheme B on a stretched grid with a 
stretching which placed six grid points in the rising portion of the radial velocity 
profile of the Ekman layer as described in $ 3 .  The experimental and numerical 
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6 = + 0.222. For further details see table 1.  
FIGURE 10. Spin-up results for the location ( r  = 4.75 cm, z = 3.00 cm) for E = 1.67 x and 

results are shown and compared in figures 8-16. They are displayed as plots of the 
non-dimensional zonal velocity v/AOr us. the non-dimensional time Ri t/27r (i.e. the 
number of rotations based on Ri). The upper abscissa shows the non-dimensional 
spin-up time (vRi)) t /h based on linear theory (Greenspan & Howard 1963). The 
results are plotted to show the decay of a positive velocity for both spin-up and spin- 
down experiments. The dots are the experimental measurements and the continuous 
curves are the numerical results. 

The laboratory experiments and the numerical simulations were not carried out 
for identical conditions; several small differences did exist. For the simulations the 
change in rotation rate was effectively instantaneous but for the experiments there 
were the small time delays discussed in 8 2. The values of v were not always identical; 
however, the differences between the numerical and experimental values ranged from 
less than 1% to a maximum of 2.7%. For the experiments 2h was 6-04 cm and for 
the simulations it was 6.00 cm. The simulations were carried out with a small inner 
cylinder of radius 0-01 cm; an increase of this radius to 0.1 cm showed no difference 
in the results. 

Figures 8-11 show spin-up results for the midradius ( r  = 4.75 cm) and middepth 
( z  = 3.00 cm) location and various values of Ri and AR. Figures 8 ( a )  and ( b )  show 
the results of two experiments and simulations for Ri = 0.3142 s-l (rotation period = 
20.00 s) and AQ = + 0.0349 s-1 and + 0.1047 s-l, respectively. For these experiments 
table 1 gives the values of Ri and AR and also the values of the final rotation rate R, 
and the non-dimensional parameters E and E .  The values of the water temperature T ,  
the kinematic viscosity v and the sample period p for the laboratory experiments are 
also given. A plus sign in front of AR and 8 is used to denote a spin-up experiment and 
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FIGURE 11 .  Spin-up results for the location (T = 4.75 cm, z = 3.00 cm). (a) Results for 
E = 1.10 x and E = + 0.222. For further 
details see table 1.  

and E = + 0.1 11. ( h )  Resnlts for E = 146 x 

a minus sign to  denote a spin-down experiment. Figures 9(a )  and ( b )  show the results 
of two experiments and simulations for Qi = 0.6283 s-l (rotation period = 10.00 s) 
and As1 = + 0.0698 s-1 and + 0.2094 s-l, respectively. Figure 10 also shows results for 
Ri = 0.6283 s-l but for the intermediate value A!2 = + 0.1396 s-l. The values of the 
other parameters are again given in table 1.  Figures 1 1  (a) and (b)  show the results 
of two experiments and simulations for 0; = 0.9425 s-1 (rotation period = 6.667 s) 
and As1 = +0.1047 s-1 and +0.2094 s-1, respectively, wit8h the values of the other 
parameters given in table 1 .  
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Qi a, 
b-') (9-l) 

0.3142 0.3491 
0.3142 0.4189 

0.6283 0.6981 
0.6283 0.7679 
0.6283 0.8378 

0.9425 1.0472 
0.9425 1.1519 

0.6981 0.6283 

An 
(6-l) 

+ 0.0349 
+ 0.1047 

+ 0.0698 
+0.1396 
+ 0.2094 

+ 0.1047 
+ 0.2094 

- 0.0698 

T 

22.5 
22.5 

22.5 
22.3 
24.25 

22.65 
24.35 

22.5 

("C) ( 
v x  102 p 

om2 s-l) (9) 

0.948 1 
0.948 1 

0.948 1 
0.953 0.5 
0.910 0.5 

0.945 0-5 
0-908 0.5 

0.948 0.5 

E X  103 

3.30 
3.30 

1.65 
1.67 
1.58 

1.10 
1.06 

1.49 

E 

+0.111 
+ 0.333 

+0*111 
+ 0.222 
+ 0.333 

+0.111 
+ 0.222 

- 0.200 

TABLE 1. Values of the parameters for the laboratory experiments and numerical simulations in 
which Qi and An alone were varied. The location was a t  the rnidradius a.nd middepth (r = 4.75 
cm, z = 3.00 cm). Specific experiments and simulations are identified by the figure number in 
which the results are presented. 

Figure r Z T v x  102 P 

13 (4 2.37 0.75 22-65 0.945 0.5 1.66 
13 ( b )  2.37 3.00 22.75 0.943 0.5 1.64 
14(a) 2.37 4.50 22.75 0.943 0.5 1.64 
14@) 2-37 5.25 22.80 0-942 0-5 1.64 

15 (a) 4.75 0.75 224  0.946 0.5 1.65 
15 ( b )  4.75 3.00 22.6 0.946 0.5 1.65 

16 (a) 7.12 0.75 23.9 0.940 0.5 1-84 
16 (b )  7.12 3-00 22.9 0.940 0.5 1.64 

TABLF 2. Values of the parameters for the laboratory experiments and numerical simulations 
in which t.he location alone was varied. The values of &, A i l  and E were 0.6283 s-1, + 0.1396 6-l 

and + 0.222, respectively, and the values of E were as shown. Specific experiments and simula- 
tions are identified by the figure number in which the results are presented. 

number (em) (em) ("C) (emz s-l) (9) E X  103 

Figure 12 shows the results of a spin-down experiment and simulations for 
r = 4.75 em, z = 3.00 cm, 52, = 0.6981 (rotation period = 9.000 s )  and AQ = - 0.0698 
s-l. The values of the other quantities are given in table 1. 

Figures 13-16 show spin-up results for fixed values of Qi and AS2 and variable r 
and z. These experiments and simulations were carried out for fii = 0.6283 s-l 
(rotation period = 10.00 s) and AL? = + 0.1396 s-l and hence for E = + 0.222. Figures 
13(a), 13(b), 14(a) and l 4 ( b )  show the results of four experiments and simulations 
for r = 2.37 ern and z = 0-75 em, 3-00 cm, 4.50 ern and 5.25 cm, respectively. The 
values of r ,  z, T, v, p and E are given in table 2. Because of the symmetry of the 
experimental set-up about the middepth plane ( z  = 3.00 em) the results shown in 
figures 12 (a) and 13 (b) for z = 0.75 cm and 5.25 cm should be identical within the 
experimental tolerance (see tj 2). Figures 15 (a) and ( b )  show the results of two experi- 
ments and simulations for r = 4.75 em and z = 0.75 cm and 3.00 cm, respectively. 
The values of the other quantities are given in table 2. The reproducibility of the 
experiments is demonstrated by comparing figure 15(b)  with figure 10 since these 
r e s ~ l t ~ s  are for almost identical values of all the parameters. Figures 16(a) and (6) 
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for 

show the results of two experiments and simulations for r = 7-12 cm and z = 0.76 cm 
and 3.00 cm, respectively. The values of the other quantities are given in 
table 2. 

5. Analysis and discussion of the results 
All the comparisons between the numerical and the experimental results shown in 

figures 8-16 show good agreement. After four, and sometimes seven, rotation periods 
the agreement is still good. All systematic upward or downward displacements of 
the results with respect to one another are within the experimental tolerance dis- 
cussed in 0 2. In general the results a,gree to within a few per cent. The agreement is 
good not only for the overall decay of the zonal flow but also for the amplitudes and 
phases of the weakly excited inertial modes. Only the results shown in figure 8(a) 
indicate a deviation which is a little greater than the experimental talerance. This 
good agreement means that the small differences between the simulations and the 
experiments (see $ 4 )  did not produce significant differences in the results. Particularly 
noteworthy in this context is the absence of a noticeable effect due to the small time 
delays in changing the rotation rate of the turntable (see $2) .  

The dimensional angular frequencies of the linearized, inviscid, axisymmetric, 
inertial modes in a homogeneous cylinder of fluid are given by (Greenspan 1969, p. 
83) 
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FIGURE 13. Spin-up results for E = 1.65 x and E = + 0.222. 0 ,  experimental measure- 
ments; -- , numerical solutions. (a) Results for the location (T = 2.37 cm, z = 0.75 cm). 
( 6 )  Results for the location (T = 2.37 cm, z = 3.00 cm). For further details see table 2. 

where the yn are the zeros of first-order Bessel functions and m is any integer. Previous 
experimental results (Fowlis & Martin 1975) showed that all the detectable energy 
was present at the frequency corresponding to the m = 2, n = 1 mode. This is the 
mode which is symmetrical about the middepth plane and has the gravest structure 
in the radial direction. The non-dimensional period of this mode, in terms of the 
rotational period, is 0.536. The results show that this mode grows in amplitude for 
about 14 rotation periods before starting to decay. The time scale for the decay of 
the mode is closer to E )  than E as predicted by Greenspan & Howard (1969) for a 
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FIGURE 14. Spin-up results for E = 1-64 x and E = + 0.222. (a) Results 
(r = 2.37 om, z = 4.50 cm). (b) Results for the location (T = 2.37 cm, z = 5.25 
details see table 2. 
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for the location 
cm). For further 

finite cylindrical geometry. The results presented in this paper essentially confirm 
the previous conclusion except that some of the results show a weak, longer time 
scale variation of amplitude which is suggestive of beating and implies the presence 
of another mode of a similar period. This is most obvious for the results for higher 
rotation rates in figures 11 (a )  and ( b ) .  

The spin-up results presented in figures 8-11 show that, for a given E and B, the 
period of the inertial mode decreases with time and that for a given E ,  as e increases, 
this decrease becomes larger. The opposite effect is apparent for the spin-down result, 
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FIGURE 15. Spin-up results for E = 1.65 x and E = + 0.222. (a) Results 
(T = 4.75 cm, z = 0.75 cm). (b) Results for the location (T = 4.75 cm, z = 3.00 
details see table 2. 

for 
cm) 

the location 
. For further 

in figure 12. This result can be understood from (15): as the fluid spins up (spins down), 
the effective interior value of R increases (decreases) and the angular frequency of the 
mode also increases (decreases). 

The spatial structure of the mode can be examined from the variable r and z results 
shown in figures 13-16. Note the antinode with relatively large amplitude for 
x = 3.00 crn in figures 13 (b) ,  15 ( b )  and 16 ( b )  and the node with reduced amplitude for 
z = 4.50 cm in figure 14(u). Note also tha,t the oscillations for z = 0.75 and 5.25 em 
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FIGURE 16. Spin-up results for E = 1.64 x and E = + 0.222. (a) Results 
(T = 7.12 cm, z = 0.75 cm). (b) Results for the location ( r  = 7.12 cm, z = 3.00 
detaila see table 2. 

for 
cm) 

the location 
. For further 

are out of phase with those a t  3.00 em. For a given z the amplitude of the mode is 
relatively larger a t  small radii than a t  large radii. This result is not consistent with 
the simple inviscid eigenvalue problem (Greenspan 1969, p. 82), which gives a first- 
order Bessel function for the amplitude in the radial direction. 

Plots of the meridional stream function for conditions similar to those of figure 
8 (a) (Qi = 0.3142 s-1, A!J = + 0.0349 s-1, E = 3.30 x 10-3, E = + 0.1 1 1 )  were ob- 
tained from the numerical solution. Figure 17 shows the stream function for dimen- 
sionless times (rotation periods) after the impulsive start of 0-65, 0.85, 1.05 and 1.28, 
respectively. These plots were obtained using scheme A on a 62 x 42 constant mesh 
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FIGURE 17. Stream-function contours for a spin-up simulation for values of the parameters 
identical to those for the results in figure 8(a )  ( E  = 3.30 x E = +0-111). Number of 
rotations after the impulsive start: (a )  0.65, ( b )  0.85, ( c )  1.05, ( d )  1.28. These contours were 
obtained using scheme A on a constant 62 x 42 grid. 

whereas the numerical results shown in figure 8 (a)  were obtained using scheme B on 
a stretched grid (see 3 4); the former method, however, is satisfactory for qualitative 
examination of the essential features of the meridional flow. The plots show a com- 
bination of the spin-up flow and the inertial-mode flow. Note the flux of fluid in the 
Ekman layer and the side-wall boundary layer. The observed strong oscillation of 
the interior flow at the inertial-mode period tells us that the spin-up part and the 
inertial part are comparable in amplitude. 

Analytical results for conditions identical to the laboratory experiments and 
numerical simulations are not available. However it is still informative to make com- 
parisons and in what follows some similar linear and nonlinear theories are compared 
with the laboratory results. Greenspan & Howard (1963, referred to below as G & H) 
carried out a linearized analysis ( E  < E )  < 1 )  for spin-up between two infinite parallel 
disks which included the inertial oscillations. Note that for the experiments 

0.033 < E )  < 0.057 and 0.100 Q 18) < 0-333, 
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FIQWRE 18. Comparison of the experimental results in figure 8(a) ( E  = 3.30 x and 
B = +0.111) with the analytical resuIts of Greenspan. 8z Howard (1963). -..., experimental 
results; ---, theory, equation (17) ;  -, theory, equation (18). 

thus it might appear that a comparison is of dubious value. However the nonlinear 
analyses (uide ilzfra) have shown that for relatively large e only small changes from 
the linear-theory results occur and hence we shall proceed. G & H showed that the 
effect of the vertical cylindrical wall on the spin-up process was small, and gave several 
different approximate forms for their results. Note that in the expressions from G & H 
which follow time is non-dimensionalized by ail, and the zonal flow varies from zero 
initially to unity finally. An expression from their paper [G & H, equation (3.18)] for 
the interior zonal flow which is valid for short times with respect to the spin-up time 
but not for a diffusion time is! 

vI = - 2${(2;)-4 erf (2 i t ) t  - (2; - E t ) - )  exp ( - E h )  erf [ ( 2 i  - E4)4t*]}. (16) 

Equation (16) can be rewritten in the following form which is more suitable for 
numerical evaluation: 

where 

Spin-up time, i/ 7 1 ~  

St Maurice & Veronis (1975) have also obtained (17)  using a multi-scaling analysis. 
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FIGURE 19. Comparison of the experimental results in figure l l (a)  ( E  = 1.10 x and 
B = +0.111) with the analytical results of Greenspan & Howard (1963). Curves as in figure 18. 

Figure 
number 

8 ( a )  

12 

E X  103 

3.30 
3.30 
3.30 

1.65 
1.67 
1.58 

1.10 
1.06 

2.97 

1.49 

E 

+0*111 
+ 0.222 
+ 0.333 

+0*111 
f 0.222 
+ 0.333 

+0.111 
+ 0.222 

-0.100 

-0.100 

7T 

2.77 
2.77 
2.77 

3.91 
3.90 
4.00 

4.80 
4.91 

2.92 

4.13 

- 
7 E  

2.78 
2.75 
2.64 

3.92 
3.81 
3.83 

4.85 
4.78 

2.86 

4.2 1 

N 
3 
3 
3 

3 
3 
3 
3 
3 

2 

2 

ru 
0.05 
0.04 
0.02 

0.02 
0.01 
0.02 

0.01 
0.01 

0.02 

0.00 

TABLE 3. A comparison between the theoretical spin-up time rT and the measured average spin- 
up time ?, for experiments in which E and E were varied. The location was at  the midradius 
and middepth ( r  = 4-75 cm, z = 3.00 cm). Experiments are identified by the figure number in 
which the results are presented except where additional results have been included. 

Figures 18 and 19 show (17) plotted against the smal1-c results of figures 8(a) and 
11 (a), respectively. G & H also give an approximate form of (17) [G & H, equation 
(3.20)], namely 

vI = 2S(2t) [I - exp ( - Eat)].  (18) 

Equation (18) is also plotted in figures 18 and 19. Note that for these plots (17) and 
(18) were transformed to show the decay of a non-dimensional zonal flow of unity to  



Numerical solutions and measurements of spin-up 635 

z 
N Y 

- Figure r 
number (em) (cm) E X  103 7T 7 E  

13 (a) 2.37 0.75 1.65 3.92 3.85 2 0.04 
2-37 1.50 1.65 3.92 3.83 2 0.00 

13 ( b )  2-37 3.00 1.64 3.93 3.88 2 0.00 
14(a) 2.37 4.50 1.64 3.93 3.98 2 0.04 
14 (b )  2.37 5.25 1.64 3.93 3.86 2 0.0 1 

15 (4 4.75 0.75 1.65 3.92 3.75 2 0.00 
4.75 1.50 1.65 3.92 3.81 2 0.02 

15 ( b )  4.75 3.00 1.65 3.92 3.78 2 0.02 
4.75 4.50 1.65 3.92 3.84 2 0.10 

16 (a) 7.12 0-75 1.64 3.93 3.58 2 0.00 
7.12 1.50 1.64 3.93 3.55 2 0.04 
7-12 3-00 1.64 3-93 3.69 2 0.04 
7.12 4.50 1-84 3.93 3.61 2 0.01 

TABLE 4. A comparison between the theoretical spin-up time rT and the measured average spin- 
up time FE for experiments in which the location alone was varied. The values for E were as 
shown and the value for E was +0.222. Experiments are identified by the figure number in 
which the results are presented except where additional results have been included. 

zero us. time non-dimensionalized by 27rQ;l. G & H give a third expression [G & H, 
equation (3.10)] which is valid for spin-up and diffusion times but not for shorter 
times. This expression is not plotted in this paper since the experimental results are 
for time periods of about 1Q spin-up times. 

The above comparisons show that there is good agreement for the overall decay of 
the zonal flow (see below) but the inertial oscillations are not described well either in 
phase or amplitude by the G & H analysis. For the infinite geometry all axisymmetric 
modes have a frequency of 2R, whereas the resonances in the cylinder are given by 
(15). This frequency difference, as well as the frequency change in the experiments 
due to the change in R, as discussed above, account for the phase errors. The ampli- 
tudes given by (17) are too small and those given by (18) are too large. Note also 
that (17) and (18) do not give the z structure of the modes. 

Tables 3 and 4 show a comparison between the spin-up times predicted by (18) 
(7T = (2.)-1E-4) and the spin-up times for the laboratory experiments (rE).  The 
spin-up times for additional experiments not presented in Q 4 have been included in 
tables 3 and 4. It was not considered worthwhile to show all these results in $4 .  
The values of 73 were derived using a least-squares fit to a log-linear plot straight line. 
Since all of the experiments were repeated more than once, an average value ( T E )  of 
7E is given in the tables and the number of repeated experiments N and the standard 
deviations p are also given. Although p is not a good measure of the repeatability of 
the experiments, because of the small values of N ,  it does convey some information 
and so it has been included. Table 3 shows the comparison for fixed r and z and variable 
E and E and table 4 that for fixed E and E and variable r and z. The agreement between 
rT and TE is very good for small E and small r .  However, there is a trend towards smaller 
values of TE as E increases and also a similar trend as r increases. 

The linear analysis by G & H has been extended to include nonlinear effects by 
Greenspan & Weinbaum (1965), Venezian (1969), Benton (1973) and Ingersoll & 
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Venezian (1968). For all the nonlinear analyses, time is scaled using the spin-up time 
and hence the inertial modes are excluded. Greenspan & Weinbaum (1965) and Benton 
(1973) examined the flow between infinite parallel disks for finite E and their results 
show that for E* < 1 and 0 < E < 0.3 only small quantitative changes from the 
linear theory occur in the flow. Their results show that initially spin-up proceeds less 
rapidly than the linear theory predicts and then later spin-up proceeds more rapidly. 
The cross-over point occurs at a time equal to 1.02 times the spin-up time. Figure 20 
shows a comparison between the results of Greenspan & Weinbaum (1965) and the 
experimental results in figures 9 (a) ,  10 and 9 (b). Because of the smallness of the effects 
due to nonlinearity, it was necessary in preparing this plot to smooth out the inertial 
modes present in the experimental results; this was done by fitting the data to a low 
power law curve. The theory and experiments show the same trend due to nonlinearity 
and agreement with respect to the cross-over point is good. It is these departures from 
the exponential decay of the linear theory which account for the decrease of 7, with 
increasing E shown in table 3. 

Venezian (1969) and Ingersoll & Venezian (1968) examined the spin-up flow in a 
cylinder for finite E and their results indicate the existence of two interior flow regions 
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divided by a moving front. The outer flow region is effectively spun-up. The front 
starts at the outer wall and moves inwards according to 

T* = b( 1 + E)-* [ 1 + E exp ( - E*t)]i, (19) 

where r* is a dimensional radius and t has been non-dimensionalized by the final 
rotation rate. Thus for E = 0.222 and t -+ 00, r* -+ 8.58 cm. Venezian (1969) has also 
shown that the front has a thickness of SEfh, which for the results in table 4 ( E  = 1.65 x 
10-3) is equal to 1-22 cm. Since the above thickness is only a characteristic value it is 
not unreasonable to expect that the outer flow region is making its presence felt at  
the outermost measurement location of r = 7.12 cm and even at r = 4.75 cm. This 
is suggested as the reason for the decrease in 5, with increasing radius shown in table 4. 

In  a recent publication Weidman (1976) reports on laser-Doppler measurements of 
linear and nonlinear spin-up and spin-down for a cylindrical container undergoing a 
constant angular acceleration. This paper contains many valuable results for very 
small Ekman numbers ( N lo-'). However, the velocimeter used was stationary in the 
laboratory frame and could not measure phenomena on the time and space scales of 
the inertial waves. Weidman also determined the stability boundary for Ekman 
spiral waves during spin-up and the stability boundary for Couette flow instability 
for spin-down. 

6. Conclusions 
The spin-up flow in a cylinder of homogeneous fluid has been examined both experi- 

mentally and numerically. The primary motivation for this work was to check 
numerical solutions by comparing them against accurate and disturbance-free labora- 
tory measurements obtained with a rotating laser-Doppler velocimeter. For the ranges 
of E and E considered (1.06 x < E < 3.30 x 0.10 G 181 < 0.33), the spin-up 
flow is an axisymmetric and dissipative flow with strong rotational effects and weak 
nonlinear effects. 

The numerical work used the primitive equations in axisymmetric form and was 
conducted on staggered grids for both constant and variable spacing. Different 
differencing schemes were used for the constant and variable grids. The results show 
the stretched-grid code to be superior to the constant-grid code. The constant-grid code 
requires many more points in the mesh and hence excessive computer time for the 
correct simulation of the boundary-layer dynamics. The increased truncation error 
due to the grid stretching and the poorer resolution in the interior region do not offset 
at all the improvement gained by the correct boundary-layer simulation. However, 
it should be noted that, for this problem, because of the Taylor-Proudman constraint 
there is not much vertical structure in the interior. Resolution studies established that 
at  least six grid points must be located between the wall and the first maximum of the 
Ekman-layer radial velocity profile in order for the spin-up times to stabilize to 
constant values. Using the stretched-grid code the interior resolution was tested by 
doubling the grid size from 42 x 42 to 82 x 82 but the results showed that no changes 
in the spin-up times occurred for these resolutions as long as the above condition on 
Ekman-layer resolution was satisfied. 

The asymptotic numerical results still have errors arising from the truncations of 
the finite-differencing schemes. The effect of these errors was assessed by comparing 
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the numerical simulations with the experimental results. These comparisons yielded 
differences almost all of which are within the experimental tolerance of a few per cent. 
Thus the accuracy of the numerical schemes has been established for this type of flow. 

The experimental results were compared with the linearized analysis of Greenspan 
& Howard (1963) and the nonlinear analysis of Greenspan & Weinbaum (1965). Both 
of these analyses are for infinite parallel disks and only the former includes the inertial 
oscillations. In  spite of the geometrical differences between the theory and the experi- 
ments, the theory predicts that the overall decay of the zonal flow on the spin-up 
time scale should be very similar for both geometries and, in fact, very good agreement 
was obtained. The weak nonlinear effects are detectable in the experimental results 
and show the trends predicted by the theory. The inertial modes for two infinite disks 
are substantially different from those for a cylinder of the dimensions used for the 
experiments (2h/b = 0.636) and agreement between theory and experiment, as 
expected, was not good. The experimental results show the correct frequency and z 
structure for the expected inviscid cylinder mode (m = 2, n = 1); however there is not 
agreement with the r structure. Perhaps this discrepancy is due to the moving front 
discussed in 0 5.  Some weak amplitude modulation, which is suggestive of the presence 
of another mode, is also present, especially for the results for lower Ekman numbers. 
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